Featured Post

Ultra violet

UV is a form of radiation generated by atomic transitions in chemical reactions such as those present in the Sun and in man-made equipment s...

Saturday, March 14, 2009

Wavelength


In physics, wavelength is the distance between repeating units of a propagating wave of a given frequency. It is commonly designated by the Greek letter lambda (λ). Examples of wave-like phenomena are light, water waves, and sound waves. The wavelength is related to the frequency by the formula: wavelength = wave speed / frequency. Wavelength is therefore inversely proportional to frequency. Waves with higher frequencies have shorter wavelengths. Lower frequencies have longer wavelengths, assuming the speed of the wave is the same.[1]

In a wave, properties vary with position. For example, in a sound wave the air pressure oscillates, while in light and other electromagnetic radiation the strength of the electric and the magnetic field vary.

Visible light ranges from deep red, roughly 700 nm, to violet, roughly 400 nm (430–750 THz). For other examples, see electromagnetic spectrum. The wavelengths of sound frequencies audible to the human ear (20 Hz–20 kHz) are between approximately 17 m and 17 mm, respectively, assuming a typical speed of sound of about 343 m/s; the wavelengths in audible sound are much longer than those in visible light.
Wavelength of a sine wave.

No comments:

Post a Comment